Section 4.1

Scatter Diagrams and Correlation

Objectives

- 1.Draw and interpret scatter diagrams
- 2.Describe the properties of the linear correlation coefficient
- 3.Compute and interpret the linear correlation coefficient
- 4. Determine whether a linear relation exists between two variables
- 5.Explain the difference between correlation and causation

The **response variable** is the variable whose value can be explained by the value of the **explanatory** or **predictor variable**. $y = 2x \cdot 3$

A **scatter diagram** is a graph that shows the relationship between two quantitative

The data shown to the right are based on a study for drilling rock. The researchers wanted to determine whether the time it takes to dry drill a distance of 5 feet in rock increases with the depth at which the drilling begins.

Depth at Which Drilling Begins, x	Time to Drill 5 Feet, y (in minutes)
35	5.88
50	5.99
75	6.74
95	6.1
120	7.47
130	6.93
145	6.42
155	7.97
160	7.92
175	7.62
185	6.89
190	7.9

The linear correlation coefficient or Pearson product moment correlation coefficient is a measure of the strength and direction of the linear relation between two quantitative variables.

r represents the sample correlation coefficient.

$$r = \frac{\sum \left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right)}{n - 1}$$

Determine the linear correlation coefficient	Depth at Which Drilling Begins, x (in feet)	Time to Drill 5 Feet, y (in minutes)	
	35	5.88	
of the drilling data.	50	5.99	1
	75	6.74	
Fix Calci	95	6.1	
	120	7.47	N=12
ე <u>™</u>	130	6.93	1(10
0	145	6.42	-
$C \perp 1$	155	7.97	-
Catalog	160	7.92	-
5' N	175	7.62	+
χυ	185 190	6.89 7.9	+
V Diagnostic DN Direction Street Positive Strong Linear	1	+	

Testing for a Linear Relation

Step 1 Determine the <u>absolute value</u> of the correlation coefficient. $\Gamma = .773$

Step 2 Find the critical value in Table II from Appendix A for the given sample size. $C_{\sqrt{3}} = .576$

Step 3 If the absolute value of the correlation coefficient is greater than the critical value, we say a linear relation exists between the two variables. Otherwise, no linear relation exists.

773>.576 Yes It is Linear

Table II Critical Values for Correlation Coefficient		
3	0.997	
4	0.950	
5	0.878	
6	0.811	
7	0.754	
8	0.707	
9	0.666	
10	0.632	
11	0.602	
(12)	0.576	
13	0.553	
14	0.532	

Difference between Correlation and Causation

According to data obtained from the Statistical Abstract of the United States, the correlation between the percentage of the female population with a bachelor's degree and the percentage of births to unmarried mothers since 1990 is 0.940.

Does this mean that a higher percentage of females with bachelor's degrees causes a higher percentage of births to unmarried mothers?

1 Population

Another way that two variables can be related even though there is not a causal relation is through a *lurking variable*.

A **lurking variable** is related to both the explanatory and response variable.

For example, ice cream sales and crime rates have a very high correlation. Does this mean that local governments should shut down all ice cream shops?

Warm temp.

Section 4.2

Least-squares Regression

Objectives

- Find the least-squares regression line and use the line to make predictions
- Interpret the slope and the *y*-intercept of the least-squares regression line
- Compute the sum of squared residuals

The difference between the observed value of y and the predicted value of y is the error, or **residual**.

Least-Squares Regression Criterion The least-squares regression line is the line that minimizes the sum of the squared errors (or residuals)

